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AMPARs in Bergmann glia are necessary for
preventing surplus CFs from producing syn-
apses onto single Purkinje cells.

Conversion of Ca21-permeable AMPARs
into Ca21-impermeable receptors in Berg-
mann glia elicited morphological changes in
fine glial processes wrapping Purkinje cell
synapses, prolonged the kinetics of glutama-
tergic synaptic transmission, and caused mul-
tiple innervation of Purkinje cells by CFs.
Thus, the morphology of glial processes and
the synaptic activities would be interdepen-
dent. The Ca21-permeable AMPARs in glial
cells probably play key roles in such in-
teractions between glia and glutamatergic
synapses.
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Integrated Genomic and
Proteomic Analyses of a
Systematically Perturbed

Metabolic Network
Trey Ideker,1,2* Vesteinn Thorsson,1,2 Jeffrey A. Ranish,1,2

Rowan Christmas,1 Jeremy Buhler,3 Jimmy K. Eng,1

Roger Bumgarner,4 David R. Goodlett,1 Ruedi Aebersold,1,2

Leroy Hood1,2

We demonstrate an integrated approach to build, test, and refine a model of
a cellular pathway, in which perturbations to critical pathway components are
analyzed using DNA microarrays, quantitative proteomics, and databases of
known physical interactions. Using this approach, we identify 997 messenger
RNAs responding to 20 systematic perturbations of the yeast galactose-utili-
zation pathway, provide evidence that approximately 15 of 289 detected pro-
teins are regulated posttranscriptionally, and identify explicit physical inter-
actions governing the cellular response to each perturbation. We refine the
model through further iterations of perturbation and global measurements,
suggesting hypotheses about the regulation of galactose utilization and phys-
ical interactions between this and a variety of other metabolic pathways.

For organisms with fully sequenced ge-
nomes, DNA microarrays are an extremely
powerful technology for measuring the
mRNA expression responses of practically
every gene (1). Technologies for globally and
quantitatively measuring protein expression
are also becoming feasible (2), and develop-
ments such as the two-hybrid system are
enabling construction of a map of interactions
among proteins (3). Although such large-
scale data have proven invaluable for distin-
guishing cell types and biological states, new

approaches are needed which, by integrating
these diverse data types and assimilating
them into biological models, can predict cel-
lular behaviors that can be tested experimen-
tally. We propose and apply one such strate-
gy here, consisting of four distinct steps:

(i) Define all of the genes in the genome
and the subset of genes, proteins, and other
small molecules constituting the pathway of
interest. If possible, define an initial model of
the molecular interactions governing pathway
function, drawn from previous genetic and
biochemical research.

(ii) Perturb each pathway component
through a series of genetic (e.g., gene deletions
or overexpressions) or environmental (e.g.,
changes in growth conditions or temperature)
manipulations. Detect and quantify the corre-
sponding global cellular response to each per-
turbation with technologies for large-scale
mRNA- and protein-expression measurement.

(iii) Integrate the observed mRNA and
protein responses with the current, pathway-
specific model and with the global network of
protein-protein, protein-DNA, and other
known physical interactions.

(iv) Formulate new hypotheses to explain

1The Institute for Systems Biology, 4225 Roosevelt
Way NE, Suite 200, Seattle, WA 98105, USA. Depart-
ments of 2Molecular Biotechnology, 3Computer Sci-
ence, and 4Microbiology, University of Washington,
Seattle, WA 98195, USA.

*To whom correspondence should be addressed at
The Institute for Systems Biology. E-mail: tideker@
systemsbiology.org

Fig. 1. Model of galactose utilization. Yeast metabolize galactose through a series of steps involving
the GAL2 transporter and enzymes produced by GAL1, GAL7, GAL10, and GAL5. These genes are
transcriptionally regulated by a mechanism consisting primarily of GAL4, GAL80, and GAL3. GAL6
produces another regulatory factor thought to repress the GAL enzymes in a manner similar to
GAL80. Dotted interactions denote model refinements supported by this study.
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observations not predicted by the model. De-
sign additional perturbation experiments to
test these, and iteratively repeat steps (ii),
(iii), and (iv).

As proof-of-principle, we now implement
this integrated approach to explore the pro-
cess of galactose utilization (GAL) in the
yeast Saccharomyces cerevisiae. The GAL
pathway is a classic example of a genetic

regulatory switch, in which enzymes required
specifically for transport and catabolism of
galactose are expressed only when galactose
is present and repressing sugars such as glu-
cose are absent. Extensive biochemical stud-
ies (4 ) and saturating mutant screens (5) have
defined the genes, gene products, and meta-
bolic substrates required for function of this
process and have elucidated the key molecu-

lar interactions that lead to pathway activa-
tion or inhibition. Thus, by combining this
prior work with the complete sequence of the
yeast genome, step (i) above has in large part
already been accomplished. In steps (ii)
through (iv) that follow, we report the first
large-scale comparison of mRNA and protein
responses, describe an ongoing attempt to
systematically explain these responses using
existing databases of regulatory and other
physical interactions, and explore a number
of refinements to the GAL model suggested
by these integrative studies.

Step (i): As shown in Fig. 1, galactose
utilization consists of a biochemical pathway
that converts galactose into glucose-6-phos-
phate and a regulatory mechanism that con-
trols whether the pathway is on or off. This
process has been reviewed extensively (4, 6 )
and involves at least three types of proteins.
A transporter gene (GAL2) encodes a per-
mease that transports galactose into the cell;
several other hexose transporters (HXTs)
may also have this ability (7). A group of
enzymatic genes encodes the proteins re-
quired for conversion of intracellular galac-
tose, including galactokinase (GAL1), uri-
dylyltransferase (GAL7), epimerase (GAL10),
and phosphoglucomutase (GAL5/PGM2). The
regulatory genes GAL3, GAL4, and GAL80 ex-
ert tight transcriptional control over the trans-
porter, the enzymes, and to a certain extent,
each other. GAL4p is a DNA-binding factor
that can strongly activate transcription, but in
the absence of galactose, GAL80p binds
GAL4p and inhibits its activity. When galac-
tose is present in the cell, it causes GAL3p to
associate with GAL80p. This association caus-
es GAL80p to release its repression of GAL4p,
so that the transporter and enzymes are ex-
pressed at a high level.

Although these genes and interactions
form the core of the GAL pathway, the com-
plete regulatory mechanism is more complex
(8–11) and involves genes whose roles in
galactose utilization are not entirely clear (12,
13). For instance, the gene GAL6 (LAP3)
functions predominantly in a drug-resistance
pathway, but can suppress transcription of the
GAL transporter and enzymes under certain
conditions and may itself be transcriptionally
controlled by GAL4 (14 ).

Step (ii): Guided by the current model, we
applied 20 initial perturbations to the GAL
pathway. Wild-type (wt) and nine genetically
altered yeast strains were examined (15),
each with a complete deletion of one of the
nine GAL genes: transport (gal2D), enzymat-
ic (gal1D, gal5D, gal7D, or gal10D), or reg-
ulatory (gal3D, gal4D, gal6D, or gal80D).
These strains were perturbed environmentally
by growth in the presence (1gal) or absence
(–gal) of 2% galactose, with 2% raffinose
provided in both media (16).

We examined global changes in mRNA

Fig. 2. Perturbation matrix. Microarrays were used to measure the mRNA expression profiles of
yeast growing under each of 20 perturbations to the GAL pathway. (A) Each spot represents the
change in expression of a GAL gene due to a particular perturbation (listed above each column);
medium gray (i.e., the same level as figure background) represents no change, whereas darker or
lighter shades represent increased or reduced expression, respectively. The left half of the matrix
shows expression changes for each deletion strain as compared to wt, with both strains grown in the
presence of galactose; the right half shows the same differential comparison, but with both strains
grown in the absence of galactose (35). The wt1gal versus wt–gal perturbation (far left) isolates the
effects of growth with and without galactose, whereas the wt1gal versus wt1gal perturbation (second
from left) serves as a negative control. (B) Expression profiles as in (A), with significant changes (l $
45) circled in magenta. Also superimposed are the qualitative changes (1/2) that we expect using the
Fig. 1 model [see Step (iv)]. (C) Average expression profiles for genes in each of 16 clusters. Clusters
contained genes involved in a variety of metabolic processes, as well as genes of unknown function
[Web table 1 (20)]; particular Biological Processes [Gene Ontology Database, March 2001 (36)] occurring
at higher-than-expected frequencies within each cluster are annotated at right. (D) Cellular doubling
time in each of the 20 conditions, measured before harvest.
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expression resulting from each perturbation,
with DNA microarrays of approximately
6200 nuclear yeast genes as described (17 ).
In each experiment, fluorescently labeled
cDNA from a perturbed strain was hybridized
against labeled cDNA from a reference strain
(wt, grown in 1gal media). To obtain robust
estimates of fluorescent intensity, four repli-
cate hybridizations were performed for each
perturbation. Using a statistical method based
on maximum-likelihood estimation (18), we
identified 997 genes whose mRNA levels
differed significantly from reference under
one or more perturbations. This set was then
divided into 16 clusters using self-organizing
maps (19), where each cluster contained
genes with similar expression responses over
all perturbations. Figure 2 displays a matrix
summarizing the effects of perturbation on
mRNA expression of the GAL genes and
gene clusters [complete data provided in Web
table 1 (20)].

Are the observed changes in mRNA expres-
sion also reflected at the level of protein abun-
dance? To address this question, we examined
differences in protein abundance between
wt1gal and wt–gal conditions using isotope-
coded affinity tag (ICAT) reagents and tandem
mass spectrometry (MS/MS) (21). Equal
amounts of protein extracts from wt1gal and
wt–gal cultures were labeled with isotopically
heavy and normal ICAT reagents, respectively,
then combined and digested with trypsin. The
resulting peptide mixture was fractionated by
multidimensional chromatography and ana-
lyzed by MS/MS. Computational analysis of
the tandem mass spectra was used to identify
the proteins from which specific peptides orig-
inated and to indicate relative abundances of the
heavy and normal ICAT isotopes of each of
these peptides.

We obtained protein-abundance ratios for
a total of 289 proteins [Web table 1 (20)],
including all of the GAL enzymes and the
transporter. Figure 3 shows protein-abun-
dance ratios versus the corresponding
mRNA-expression ratios obtained with DNA
microarrays: as a whole, protein-abundance
ratios were moderately correlated with their
mRNA counterparts (r 5 0.61, P , 1.3 3
10220). Although approximately 30 proteins
displayed clear changes in abundance be-
tween the wt1gal and wt–gal conditions
(?log10 ratio? . 0.25), mRNA levels for 15 of
these did not change significantly in response
to any perturbation, suggesting that these pro-
teins may be regulated posttranscriptionally.
In addition, many ribosomal-protein genes
increased three- to fivefold in mRNA but not
in protein abundance in response to galactose
addition. These results underscore the impor-
tance of integrated mRNA- and protein-ex-
pression measurements for understanding bi-
ological systems.

Step (iii): Can we attribute the observed

mRNA and protein changes to underlying
regulatory interactions in the cell? Although
we already have a model of interactions
among the GAL genes, it does not address
changes in expression observed for the hun-
dreds of other genes appearing in Figs. 2 and
3. To supplement this model, we assembled a
catalog of previously observed physical inter-
actions in yeast by combining a published list
of 2709 protein-protein interactions (3) with
317 protein3DNA interactions recorded in
the transcription-factor databases (22). A to-
tal of 348 genes associated with interactions
in this catalog were affected in mRNA or
protein expression by at least one perturba-
tion or involved in two or more interactions
with affected genes. Figure 4A displays these
genes graphically, along with their 362 asso-
ciated interactions, as a physical-interaction
network.

Genes linked by physical interactions in
the network tend to have more strongly cor-
related expression profiles than genes chosen
at random (P , 0.001). We believe that these
correlations identify network interactions that
are likely to have transmitted a change in
expression from one gene (or protein) to an-
other over our 20 perturbations. Most
straightforwardly, a protein3DNA interac-
tion may be responsible for directly transmit-
ting an expression change from a transcrip-
tion factor to a highly correlated target
gene (e.g., Mcm13Far1 and Mig13Fbp1;
mRNA expression profile correlations are
rMcm1,Far1 5 0.82 and rMig1,Fbp1 5 0.63).
Alternatively, genes A and B may be under
control of a common transcription factor

C3(A,B): coexpression of A and B provides
evidence that C transmits these changes, re-
gardless of whether C itself changes detect-
ably in expression. This is the case for the
GAL enzymes regulated by Gal4 (Fig. 4B),
amino acid synthesis genes regulated by
Gcn4 (Fig. 4C), and a class of gluconeogenic
genes controlled by Sip4 (Sip43Fbp1, Pck1,
Icl1). Finally, we may scan the network for
indirect effects, such as a change in A trans-
mitted to B through a protein-protein interac-
tion with a signaling protein (e.g., Gcr2–
Gcr13Tpi1; rGcr2,Tpi1 5 –0.86). Many oth-
er physically interacting, strongly correlated
genes are listed in Web table 2 (20); each of
these associates an observed change in gene
expression with the regulatory interaction(s)
likely to have caused it.

Ultimately, we wish to determine paths
through the network connecting perturbed
GAL genes to every other affected gene. This
is not always possible, because many of the
required interactions linking galactose utili-
zation to other metabolic processes are still
unknown. However, analysis of our expres-
sion data suggests that Gal4p directly regu-
lates genes in several of these processes
through novel protein3DNA interactions.
To identify putative interactions, we looked
for the well-characterized Gal4p-binding site
(23 ) upstream of genes in expression clusters
1, 2, and 3, which together contained all
seven genes with established Gal4p-binding
sites. Of the 87 remaining genes in these three
clusters, nine had Gal4p-binding sites not
previously identified [Web table 3 (20)], a
significantly greater proportion than were

Fig. 3. Scatter plot of protein expression versus mRNA expression ratios. Ratios of wt1gal to
wt2gal protein expression, measured for each of 289 genes using the ICAT technique, are plotted
against the corresponding mRNA expression ratios measured by microarray. Many genes with
elevated mRNA or protein expression in wt1gal were metabolic (Œ) or ribosomal (}), whereas
genes involved in respiration (�) almost always had reduced expression levels. Names of genes that
were indistinguishable in both mRNA and protein (due to high sequence similarity) are separated
by a slash.
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found in clusters 4 through 16 (10.3% versus
2.8%; P , 0.002). This set of nine contained
genes involved in glycogen accumulation and

protein metabolism as well as several genes of
unknown function (e.g., YMR318C, a gene
shown in Fig. 3 to have strong mRNA and

protein responses to galactose induction) (24).
As shown in Fig. 1, we suggest that Gal4p may
regulate these genes by direct binding.

Fig. 4. Integrated physical-interaction network. Nodes represent genes, a
yellow arrow directed from one node to another signifies that the protein
encoded by the first gene can influence the transcription of the second
by DNA binding (protein3DNA), and a blue line between two nodes
signifies that the corresponding proteins can physically interact (protein-
protein). Highly interconnected groups of genes tend to have common
biological function and are labeled accordingly. (A) Effects of the

gal4D1gal perturbation are superimposed on the network, with GAL4
colored red and the gray scale intensity of other nodes representing
changes in mRNA as in Fig. 2 (node diameter also scales with the
magnitude of change). Regions corresponding to (B) galactose utilization
and (C) amino acid synthesis are detailed at right. Graphical layout and
network display were performed automatically using software based on
the LEDA toolbox (37). An enlarged version of (A) is provided in (20).

Fig. 5. Tree comparing gene-expression changes resulting
from different perturbations to the GAL pathway. We used
the Neighbor and Drawtree programs (38) to construct a
hierarchical-clustering tree (39) based on Euclidean dis-
tance between perturbation profiles, where each profile
consists of log10 mRNA expression ratios over the set of
997 significantly affected genes. The closer two perturba-
tions are to each other through the branches of the tree,
the more similar their observed changes in gene expression.
Leaves of the tree are labeled with the relevant genetic
perturbation (wild-type or gene deletion) followed by the
environmental perturbation (1/– gal). Twenty initial per-
turbations (solid branches) and three follow-up perturba-
tions are shown (dotted branches). As in Fig. 2, profiles for
all genetic perturbations are relative to that of the wild
type, with both strains grown in identical media (1gal or
–gal).
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Step (iv): Lastly, how do the observed re-
sponses of GAL genes compare to their predict-
ed behavior? Figure 2B shows the qualitative
changes (1 and –) in mRNA expression that we
predicted based on the model shown in Fig. 1
and from current knowledge of galactose utili-
zation as summarized in Step (i). In general,
these were in good agreement with the observed
changes. For example, growth of wild-type cells
in 1gal versus –gal media significantly induced
GAL1, GAL2, GAL7, GAL10, and GAL80 as
expected, while deleting the positive regulators
GAL3 and GAL4 led to a significant expression
decrease in many of these genes. In –gal media,
deletion of the repressor GAL80 caused a dra-
matic increase in GAL-enzyme expression; in
1gal, this deletion had little or no effect on
these genes, presumably because they were al-
ready highly expressed.

A number of observations were not predict-
ed by the model and are listed in Web table 4
(20); in many cases, these suggest new regula-
tory phenomena that may be tested by hypoth-
esis-driven approaches. For example, in the
presence of galactose, gal7 and gal10 deletions
unexpectedly reduced the expression levels of
other GAL enzymes. Because the metabolite
Gal-1-P is known to accumulate in cells lacking
functional Gal7 and is detrimental in large quan-
tities (25), one hypothesis is that the observed
expression-level changes are dependent on
build-up of Gal-1-P or one of its metabolic
derivatives. Under this model, the cell would
limit metabolite accumulation by first sensing
toxic levels through an unknown mechanism,
then triggering a decrease in GAL-enzyme ex-
pression (Fig. 1). Alternative scenarios are also
possible, such as a model in which GAL10
influences the expression of GAL7 and GAL1
through transcriptional interference within the
GAL1-10-7 locus (9).

To test the hypothesis that the effects of
gal7D and gal10D are dependent on increased
levels of Gal-1-P or a derivative molecule,
we examined the expression profile of a
gal1Dgal10D double deletion growing in 1gal
conditions (relative to the wt1gal reference).
We predicted that in this strain, the absence of
GAL1 activity would prevent build-up of Gal-
1-P and the changes in GAL gene expression
would not occur. Conversely, if the expression
changes did not depend on Gal-1-P (e.g., are
caused by chromosomal interactions at the
GAL1-10-7 locus), they would also be likely to
occur in the gal1Dgal10D strain. Consistent
with our initial hypothesis, GAL-enzyme ex-
pression was not significantly affected by this
perturbation, and as shown in Fig. 5, the expres-
sion profile of gal1Dgal10D over all affected
genes was more similar to the profile of
gal1D1gal than to that of gal10D1gal or any
other perturbation.

Another unanticipated observation was the
slow growth of the gal80D mutant in –gal con-
ditions (Fig. 2D), the large number of gene

clusters affected by this perturbation (Fig. 2C,
compare rightmost column to the other eight
columns in the –gal set), and the corresponding
large distance between the gal80D–gal expres-
sion profile and every other profile in Fig. 5.
Since this perturbation leads to constitutive ex-
pression of the GAL enzymes and transporter,
we wished to determine whether the widespread
expression changes were dependent on these
genes. Accordingly, we measured the expres-
sion profile of a gal4Dgal80D–gal double dele-
tion, in which the GAL enzymes and transporter
are not expressed. Both the doubling time (144
min) and overall expression profile of this strain
(Fig. 5) were more similar to those of gal4D
(129 min) than gal80D (205 min), suggesting
that the effects of the gal80D perturbation are
indeed mediated by other GAL genes. To fur-
ther determine which GAL genes were impor-
tant for the effect, we measured the expression
profile of a gal2Dgal80D–gal perturbation, in
which the GAL transporter was absent. This
profile was more similar to that of gal2D
than gal80D, providing evidence that the
transporter is necessary to produce the slow
growth and expression changes seen for the
gal80D perturbation.

We expect that more directed experimental
approaches (i.e., biochemistry, genetics, cell bi-
ology) will be required to test these ideas and
further deepen our understanding of galactose
utilization and its interacting networks. Even so,
global and integrated analyses are extremely
powerful for suggesting new hypotheses, espe-
cially with regard to the regulation of a pathway
and its interconnections with other pathways. As
technologies for cellular perturbation and global
measurement mature, these approaches will
soon become feasible in higher eukaryotes.
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Natural killer (NK) cells are lymphocytes that can be distinguished from T and
B cells through their involvement in innate immunity and their lack of rear-
ranged antigen receptors. Although NK cells and their receptors were initially
characterized in terms of tumor killing in vitro, we have determined that the
NK cell activation receptor, Ly-49H, is critically involved in resistance to murine
cytomegalovirus in vivo. Ly-49H requires an immunoreceptor tyrosine-based
activation motif (ITAM)–containing transmembrane molecule for expression
and signal transduction. Thus, NK cells use receptors functionally resembling
ITAM-coupled T and B cell antigen receptors to provide vital innate host defense.

Natural killer (NK) cells were first identified
because of their “natural” ability to kill tu-
mors in vitro, an ability that is now known to
occur through activation receptors that trigger
the release of perforin-containing cytolytic
granules [reviewed in (1)]. These lympho-

cytes can be distinguished from T and B cells
because they do not express rearranged anti-
gen receptors and are not directly involved in
acquired immunity. However, NK cells par-
ticipate in early innate host defense against
pathogens and are generally thought to

counter infections through a nonspecific re-
sponse to inflammatory cytokines that induce
their production of interferon-g (2). Yet, NK
cells appear to respond specifically against
certain pathogens. For example, in humans,
selective NK cell deficiency is associated
with recurrent systemic infections, especially
with herpesviruses such as cytomegalovirus
(3). This is closely paralleled by the suscep-
tibility of NK cell–depleted mice to murine
cytomegalovirus (MCMV) but not to lym-
phocytic choriomeningitis virus (4). Al-
though the mechanisms underlying this sus-
ceptibility are incompletely understood, NK
cell receptors that activate tumor cytotoxicity
may play important roles in innate defense
against specific infections (5).

The critical involvement of NK cell acti-
vation receptors in defense against pathogens
is highlighted by the expression of virus-
encoded proteins that interfere with natural
killing (6). In many cases, these proteins
enhance the function of inhibitory major his-
tocompatibility complex (MHC) class I–spe-
cific NK cell receptors that potentially inter-
fere with signals from activation receptors,
such as Ly-49D and Ly-49H, that are coupled
to immunoreceptor tyrosine-based activa-
tion motif (ITAM)–containing transmembrane

Fig 1. BXD-8 mice possess the NKCB6 haplotype and dis-
play MCMV susceptibility that is not complemented by
DBA/2. (A) Genetic and physical maps of NKC-linked loci
on mouse chromosome 6. A genetic linkage map and
schematic diagram of the BXD-8 chimeric chromosome 6 is
represented at left, based on the Mouse Genome Informat-
ics database (14, 25). Chromosomal regions derived from
the C57BL/6 (solid bar) or DBA/2 (open bars) inbred pro-
genitor strains are indicated, along with genetic position
(distance is indicated in centimorgans from the centro-
mere) of C57BL/6 alleles (solid arrowheads) and DBA/2
(open arrowheads) alleles for the recombination break-
points. Sequence-tagged site markers that reside close to
the centromere and telomere are also shown. Thus far, in
BXD-8, all loci reported to reside between D6Mit86 and
D6Rik59 (36 tested loci) and between Iva2 and Xmmv54
(10 loci) contain DBA/2 alleles. C57BL/6 alleles account for
all BXD-8 loci reported to reside between D6Rik61 and
D6Mit198, except for the Cmv1 locus (9, 25). A physical

linkage map of the NKC is depicted in the center, with selected loci that have been useful to distinguish alleles (19).
A physical map of the Ly49 gene cluster is expanded at right (26, 27). BXD-8 and C57BL/6 NKC alleles are identically
sized for all NKC loci shown at center and for D6Wum4, D6Mit370, Ly49g, and Ly49a (L22). Surrounding Ly49h are the

Ly49k and Ly49n pseudogenes (28). (B) MCMV replication in F1 hybrid offspring from DBA/2 and BXD-8. Three days after infection [with MCMV Smith strain,
2 3 104 plaque-forming units (PFUs)], organ viral titers were assessed in tissue homogenates collected from C57BL/6, DBA/2, BXD-8, and (DBA/2 3 BXD-8)
F1 hybrid mice (five mice per group), as indicated. Spleen titers are shown here; liver titers are available online (8). Each point represents the average titer
determined for an individual mouse. In the spleens of two C57BL/6-infected mice, viral replication was below the level of detection by this assay and is
indicated with asterisks. Mean viral titers for each group are depicted as horizontal bars. For mice with titers below the level of detection of the assay, the
minimum number of detectable PFUs (102) was assumed to determine the mean. This assumption overestimates the mean for the group having titers below
detectable levels.
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