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Abstract
DNaseI hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the
discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators,
silencers, and locus control regions. Here we present the first extensive map of human DHSs
identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ~2.9
million DHSs that encompass virtually all known experimentally-validated cis-regulatory
sequences and expose a vast trove of novel elements, most with highly cell-selective regulation.
Annotating these elements using ENCODE data reveals novel relationships between chromatin
accessibility, transcription, DNA methylation, and regulatory factor occupancy patterns. We
connect ~580,000 distal DHSs with their target promoters, revealing systematic pairing of
different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility
at many regulatory regions is choreographed with dozens to hundreds of co-activated elements,
and the trans-cellular DNaseI sensitivity pattern at a given region can predict cell type-specific
functional behaviors. The DHS landscape shows signatures of recent functional evolutionary
constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher
mutation rates than that in highly differentiated cells, exposing an unexpected link between
chromatin accessibility, proliferative potential and patterns of human variation.

INTRODUCTION
Cell-selective activation of regulatory DNA drives the gene expression patterns that shape
cell identity. Regulatory DNA is characterized by the cooperative binding of sequence-
specific transcriptional regulatory factors in place of a canonical nucleosome, leading to a
remodeled chromatin state characterized by markedly heightened accessibility to nucleases1.
DNaseI hypersensitive sites (DHSs) in chromatin were first identified over 30 years ago, and
have since been extensively leveraged to map regulatory DNA regions in diverse
organisms2. DNaseI hypersensitivity is the sine qua non of all defined classes of active cis-
regulatory elements including enhancers, promoters, silencers, insulators, and locus control
regions 2-4. Because DNaseI hypersensitivity overlies cis-regulatory elements directly and is
maximal over the core region of regulatory factor occupancy, it enables precise delineation
of the genomic cis-regulatory compartment. DHSs are flanked by nucleosomes, which may
acquire histone modification patterns that reflect the functional role of the adjoining
regulatory DNA, such as the association of histone H3 lysine 4 trimethylation (H3K4me3)
with promoter elements5. Recent advances have enabled genome-scale mapping of DHSs in
mammalian cells6, 7, laying the foundations for comprehensive catalogues of human
regulatory DNA.

General features of the accessible chromatin landscape
Two ENCODE production centers (University of Washington and Duke University) profiled
DNaseI sensitivity genome-wide using massively parallel sequencing7-9 in a total of 125
human cell and tissue types including normal differentiated primary cells (n=71),
immortalized primary cells (n=16), malignancy-derived cell lines (n=30) and multipotent
and pluripotent progenitor cells (n=8) (Supplementary Table 1). The density of mapped
DNaseI cleavages as a function of genome position provides a continuous quantitative
measure of chromatin accessibility, in which DNaseI hypersensitive sites (DHSs) appear as
prominent peaks within the signal data from each cell type (Fig. 1a and Supplementary Figs.
1,2). Analysis using a common algorithm (see Methods) identified 2,890,742 distinct high-
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confidence DHSs (false discovery rate of 1%; see Methods), each of which was active in
one or more cell types. Of these DHSs, 970,100 were specific to a single cell type,
1,920,642 were active in 2 or more cell types, and a small minority (3,692) was detected in
all cell types. The relative accessibility of DHSs along the genome varies by >100-fold and
is highly consistent across cell types (Supplementary Figs. 1, 2). To estimate the sensitivity
and accuracy of the sequencing-derived DHS maps, one ENCODE production center (UW)
performed 7,478 classical DNaseI hypersensitivity experiments by the Southern
hybridization method2. Using Southerns as the standard, the average sensitivity, per cell
type, of DNaseI-seq (at a sequencing depth of 30M uniquely mapping reads) was 81.6%,
with specificity of 99.5-99.9%. Of DHSs classified as false negatives within a particular cell
type, an average of 92.4% were detected as a DHS in another cell type or upon deeper
sequencing. As such, we estimate that the overall sensitivity for DHSs of the combined cell
type maps is >98%.

Approximately 3% (n=75,575) of DHSs localize to transcriptional start sites (TSSs) defined
by Gencode10 and 5% (n=135,735, including the aforementioned) lie within 2.5 kb of a TSS.
The remaining 95% of DHSs are positioned more distally, and are roughly evenly divided
between intronic and intergenic regions (Fig. 1b). Promoters typically exhibit high
accessibility across cell types, with the average promoter DHS detected in 29 cell types (Fig
1c, second column). By contrast, distal DHSs are largely cell selective (Fig. 1c, third
column).

MicroRNAs comprise a major class of regulatory molecules and have been extensively
studied, resulting in consensus annotation of hundreds of conserved microRNA genes11,
approximately one third of which are organized in polycistronic clusters12. However, most
predicted promoters driving microRNA expression lack experimental evidence. Of 329
unique annotated miRNA TSSs (Supplementary Methods), 300 (91%) either coincided with
or closely approximated (<500 bp) a DHS. Chromatin accessibility at microRNA promoters
was highly promiscuous compared with Gencode TSSs (Fig. 1c, fourth column), and
showed cell lineage organization, paralleling the known regulatory roles of well-annotated
lineage-specific microRNAs (Supplementary Fig. 3).

The 20-50 bp read lengths from DNaseI-seq experiments enabled unique mapping to 86.9%
of the genomic sequence, allowing us to interrogate a large fraction of transposon sequences.
A surprising number contain highly regulated DHSs (Fig. 1c, fifth column and
Supplementary Figs. 4, 5), compatible with cell-specific transcription of repetitive elements
detected using ENCODE RNA sequencing data13. DHSs were most strongly enriched at
LTR elements, which encode retroviral enhancer structures (Supplementary Table 2). Two
such examples are shown in Supplementary Fig. 4, which also illustrates the strong cell-
selectivity of chromatin accessibility seen for each major repeat class. We also documented
numerous examples of transposeon DHSs that displayed enhancer activity in transient
transfection assays (Supplementary Table 3).

Comparison with an extensive compilation of 1,046 experimentally validated distal, non-
promoter cis-regulatory elements (enhancers, insulators, locus control regions, etc.) revealed
the overwhelming majority (97.4%) to be encompassed within DNaseI hypersensitive
chromatin (Supplementary Table 4), typically with strong cell selectivity (Supplementary
Fig. 2b).

Transcription factor drivers of chromatin accessibility
DNaseI hypersensitive sites result from cooperative binding of transcriptional factors in
place of a canonical nucleosome1,2. To quantify the relationship between chromatin
accessibility and the occupancy of regulatory factors, we compared sequencing depth-
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normalized DNaseI sensitivity in the ENCODE common cell line K562 to normalized ChIP-
seq signals from all 42 transcription factors mapped by ENCODE ChIP-seq14 in this cell
type (Fig. 2). Simple summation of the ChIP-seq signals strikingly parallels quantitative
DNaseI sensitivity at individual DHSs (Fig. 2a) and across the genome (R = 0.79, Fig. 2b).
For example, the beta glob in locus control region contains a major enhancer element at
hypersensitive site 2 (HS2), which appears to be occupied by dozens of TFs (Supplementary
Fig. 6a). Such highly overlapping binding patterns have been interpreted to signify weak
interactions with lower-affinity recognition sequences potentiated by an accessible DNA
template15. However, HS2 is a compact element with a functional core spanning ~110bp
that contains 5-8 sites of transcription factor-DNA interaction in vivo depending on the cell
type16-18. The fact that the cumulative ChIP-seq signal closely parallels the degree of
nuclease sensitivity at HS2 and elsewhere is thus most readily explained by interactions
between DNA-bound factors and other interacting factors that collectively potentiate the
accessible chromatin state (Supplementary Fig. 6b). Given the relatively limited number of
factors studied, it may seem surprising that such a close correlation should be evident.
However, most of the factors selected for ENCODE ChIP-seq studies have well-described or
even fundamental roles in transcriptional regulation, and many were identified originally
based on their high affinity for DNA. Alternatively, as originally proposed by Weintraub19,
a limited number of factors may be involved in establishment and maintenance of chromatin
remodeling, while others may interact non-specifically with the remodeled state. We also
found that the recognition sequences for a small number of factors were consistently linked
with elevated chromatin accessibility across all classes of sites and all cell types
(Supplementary Fig. 6c), suggesting that regulators acting through these sequences are key
drivers of the accessibility landscape.

Overall, 94.4% of a combined 1,108,081 ChIP-seq peaks from all ENCODE TFs fall within
accessible chromatin (Fig. 2c and Supplementary Fig. 7a), with the median factor having
98.2% of its binding sites localized therein. Notably, a small number of factors diverged
from this paradigm, including known chromatin repressors, such as the KRAB-associated
factors KAP1, SETDB1 and ZNF27420, 21 (Fig. 2c). We hypothesized that a proportion of
the occupancy sites of these factors represented binding within compacted heterochromatin.
To test this, we developed targeted mass spectrometry assays22 for KAP1 and three factors
localizing almost exclusively within accessible chromatin (GATA1, c-Jun, NRF1), and
quantified their abundance in biochemically-defined heterochromatin23 vs. a total chromatin
fraction (Supplementary Fig. 7b). This analysis confirmed that factors such as KAP1
significantly occupy heterochromatin (Supplementary Fig. 7c).

An invariant directional chromatin signature at promoters
The annotation of sites of transcription origination continues to be an active and
fundamental endeavor15. In addition to direct evidence of TSSs provided by RNA
transcripts, H3K4me3 modifications are closely linked with TSSs24. We therefore explored
systematically the relationship between chromatin accessibility and H3K4me3 patterns at
well-annotated promoters, its relationship to transcription origination, and its variability
across ENCODE cell types.

We performed ChIP-seq for H3K4me3 in 56 cell types using the same biological samples
used for DNaseI data (Supplementary Table 1, column D). Plotting DNaseI cleavage density
vs. ChIP-seq tag density around TSSs reveals highly stereotyped, asymmetrical patterning of
these chromatin features with a precise relationship to the TSS (Fig. 3a-b). This directional
pattern is consistent with a rigidly positioned nucleosome immediately downstream from the
promoter DHS, and is largely invariant across cell types (Fig. 3b; Supplementary Fig. 8).
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To map novel promoters (and their directionality) not encompassed by the Gencode
consensus annotations, we applied a pattern-matching approach to scan the genome across
all 56 cell types (Supplementary Methods). Using this approach we identified a total of
113,622 distinct putative promoters. Of these, 68,769 correspond to previously annotated
TSSs, and 44,853 represent novel predictions (vs Gencode v7). Of the novel sites, 99.5% are
supported by evidence from spliced ESTs and/or Cap Analysis of Gene Expression (CAGE)
tag clusters (Fig. 3c and Supplementary Fig. 9; P < 0.0001; see Supplementary Methods).
We found novel sites in every configuration relative to existing annotations (Fig. 3d-f and
Supplementary Fig. 10). For example, 29,203 putative promoters are contained in the body
of annotated genes, of which 17,214 are oriented antisense to the annotated direction of
transcription, and 2,794 lie immediately downstream of an annotated gene 3’ end, with
1,638 in antisense orientation. The results indicate that chromatin data can systematically
inform RNA transcription analyses, and suggest the existence of a large pool of cell-
selective transcriptional promoters, many of which lie in antisense orientations.

Chromatin accessibility and DNA methylation patterns
CpG methylation has been closely linked with gene regulation, based chiefly on its
association with transcriptional silencing25. However, the relationship between DNA
methylation and chromatin structure has not been clearly defined. We analyzed ENCODE
reduced-representation bisulfite sequencing (RRBS) data, which provide quantitative
methylation measurements for several million CpGs26. We focused on 243,037 CpGs falling
within DHSs in 19 cell types for which both data types were available from the same
sample. We observed two broad classes of sites: those with a strong inverse correlation
across cell types between DNA methylation and chromatin accessibility (Fig. 4a,
Supplementary Fig. 11a), and those with variable chromatin accessibility but constitutive
hypomethylation (Fig. 4a, right). To quantify these trends globally, we performed a linear
regression analysis between chromatin accessibility and DNA methylation at the 34,376
CpG-containing DHSs (see Supplementary Methods). Of these sites, 6,987 (20%) showed a
significant association (1% FDR) between methylation and accessibility (Supplementary
Fig. 11b). Increased methylation was almost uniformly negatively associated with chromatin
accessibility (>97% of cases). The magnitude of the association between methylation and
accessibility was strong, with the latter on average 95% lower in cell types with coinciding
methylation vs. cell types lacking coinciding methylation (Supplementary Fig. 11c). Fully
40% of variable methylation was associated with a concomitant effect on accessibility.

The role of DNA methylation in causation of gene silencing is presently unclear. Does
methylation reduce chromatin accessibility by evicting transcription factors? Or does DNA
methylation passively ‘fill in’ the voids left by vacating TFs? Transcription factor
expression is closely linked with the occupancy of its binding sites27. If the former of the
two above hypotheses is correct, methylation of individual binding site sequences should be
independent of TF gene expression. If the latter, methylation at TF recognition sequences
should be inversely correlated with TF abundance (Fig. 4b).

Comparing TF transcript levels to average methylation at cognate recognition sites within
DHSs revealed significant negative correlations between TF expression and binding site
methylation for the majority (70%) of TFs with a significant association (P < 0.05).
Representative examples are shown in Fig. 4c and Supplementary Fig. 12a. These data argue
strongly that methylation patterning paralleling cell-selective chromatin accessibility results
from passive deposition following the vacation of TFs from regulatory DNA, generalizing
other recent reports 28

Interestingly, a small number of factors showed positive correlations between expression
and binding site methylation (Supplementary Fig. 12b), including MYB and LUN1. Both of
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these TFs showed increased transcription and binding site methylation specifically within
acute promyelocytic leukemia cells (NB4), and both interact with PML bodies29, 30, a sub-
nuclear structure disrupted in promyelocytic leukemia cells. The anomalous behavior of
these two TFs with respect to chromatin structure and DNA methylation may thus be related
to a specialized mechanism seen only in pathologically altered cells.

A genome-wide map of distal DHS-to-promoter connectivity
From examination of DNaseI profiles across many cell types we observed that many known
cell-selective enhancers become DHSs synchronously with the appearance of
hypersensitivity at the promoter of their target gene (Supplementary Figure 13). To
generalize this, we analyzed the patterning of 1,454,901 distal (>2.5kb from TSS) DHSs
across 79 diverse cell types (Supplementary Methods and Supplementary Table 6), and
correlated the cross-cell type DNaseI signal at each DHS position with that at all promoters
within ±500kb (Supplementary Fig. 14a). We identified a total of 578,905 DHSs that were
highly correlated (R > 0.7) with at least one promoter (P < 10-100), providing an extensive
map of candidate enhancers controlling specific genes (Supplementary Methods,
Supplementary Table 7). To validate the distal DHS/enhancer-promoter connections, we
profiled chromatin interactions using the chromosome conformation capture carbon copy
(5C) technique31. For example, the phenylalanine hydroxylase (PAH) gene is expressed in
hepatic cells, and an enhancer has been defined upstream of its TSS (Fig. 5a). The
correlation values for three DHSs within the gene body closely parallel the frequency of
long-range chromatin interactions measured by 5C. The three interacting intronic DHSs
cloned downstream of a reporter gene driven by the PAH promoter all showed increased
expression ranging from 3- to 10-fold over a promoter-only control, confirming enhancer
function.

We next examined comprehensive promoter-vs-all 5C experiments performed over 1% of
the human genome32 in K562 cells. DHS-promoter pairings were markedly enriched in the
specific cognate chromatin interaction (P < 10-13, Supplementary Fig. 14b). We also
examined K562 promoter-DHS interactions detected by Pol II ChIA-PET 24, which quantify
interactions between promoter-bound polymerase and distal sites. The ChIA-PET
interactions were also markedly enriched for DHS-promoter pairings (P < 10-15,
Supplementary Fig. 14c). Together, the large-scale interaction analyses affirm the fidelity of
DHS-promoter pairings based on correlated DNaseI sensitivity signals at distal and promoter
DHSs.

Most promoters were assigned to more than one distal DHS, suggesting the existence of
combinatorial distal regulatory inputs for most genes (Fig. 5b and Supplementary Table 7).
A similar result is forthcoming from large-scale 5C interaction data32. Surprisingly, roughly
half of the promoter-paired distal DHSs were assigned to more than one promoter (Fig. 5b;
Supplementary Methods), indicating that human cis-regulatory circuitry is significantly
more complicated than previously anticipated, and may serve to reinforce the robustness of
cellular transcriptional programs.

The number of distal DHSs connected with a particular promoter provides, for the first time,
a quantitative measure of the overall regulatory complexity of that gene. We asked whether
there are any systematic functional features of genes with highly complex regulation. We
ranked all human genes by the number of distal DHSs paired with the promoter of each
gene, then performed a Gene Ontology analysis on the rank-ordered list. We found that the
most complexly regulated human genes were strikingly enriched in immune system
functions (Supplementary Fig. 14d), indicating that the complexity of cellular and
environmental signals processed by the immune system is directly encoded in the cis-
regulatory architecture of its constituent genes.
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Next, we asked whether DHS-promoter pairings reflected systematic relationships between
specific combinations of regulatory factors (Supplementary Methods). For example, KLF4,
SOX2, OCT4, and NANOG are known to form a well-characterized transcriptional network
controlling the pluripotent state of embryonic stem cells33. We found significant enrichment
(P < 0.05) of the KLF4, SOX2, and OCT4 motifs within distal DHSs correlated with
promoter DHSs containing the NANOG motif; enrichment of NANOG, SOX2, and OCT4
distal motifs co-occurring with promoter OCT4; and enrichment of distal SOX2 and OCT4
motifs with promoter SOX2 (Supplementary Fig. 15a). By contrast, promoters containing
KLF4 motifs were associated with KLF4-containing distal DHSs, but not with DHSs
containing NANOG, SOX2, or OCT4 motifs (Supplementary Fig. 15a, bottom).

We also tested for significant co-associations between promoter types (defined by the
presence of cognate motif classes; see Supplementary Methods) and motifs in paired distal
DHSs (Fig. 5c and Supplementary Fig. 15b,c). For example, when a member of the ETS
domain family (motifs ETS1, ETS2, ELF1, ELK1, NERF, SPIB, and others) is present
within a promoter DHS, motif PU.1 is significantly more likely to be observed in a
correlated distal (P < 10-5). These results suggest that a limited set of general rules may
govern the pairing of co-regulated distal DHSs with particular promoters.

Stereotyped chromatin accessibility parallels function
In addition to the synchronized activation of distal DHSs and promoters described above, we
observed a surprising degree of patterned co-activation among distal DHSs, with nearly
identical cross-cell-type patterns of chromatin accessibility at groups of DHSs widely
separated in trans (Supplementary Figs. 16,17). For many patterns, we observed tens or even
hundreds of like elements around the genome. The simplest explanation is that such co-
activated sites share recognition motifs for the same set of regulatory factors. We found,
however, that the underlying sequence features for a given pattern were surprisingly plastic.
This suggests that the same pattern of cell-selective chromatin accessibility shared between
two DHSs can be achieved by distinct mechanisms, likely involving complex combinatorial
tuning.

We next asked whether distal DHSs with specific functions such as enhancers exhibited
stereotypical patterning, and whether such patterning could highlight other elements with the
same function. We examined one of the best-characterized human enhancers, DNaseI
hypersensitive site 2 (HS2) of the beta-globin locus control region16-18. HS2 is detected in
many cell types, but exhibits potent enhancer activity only in erythroid cells34. Using a
pattern-matching algorithm (see Supplementary Methods) we identified additional DHSs
with nearly identical cross-cell-type accessibility patterns (Fig. 6a). We selected 20 elements
across the spectrum of the top 200 matches to the HS2 pattern, and tested these in transient
transfection assays in K562 cells (Supplementary Methods). Seventy percent (14/20) of
these displayed enhancer activity (mean 8.4-fold over control) (Fig. 6a,f). Of note, one
(“E3”) showed a greater magnitude of enhancement (18-fold vs. control) than HS2, which is
itself one of the most potent known enhancers4. Next we selected 3 elements from the 14
HS2-like enhancers, applied pattern matching (Methods) to each to identify stereotyped
elements, and tested samples of each pattern for enhancer activity, revealing additional
K562 enhancers (total 15/25 positive) (Fig. 6b-d, f). In each case, therefore, we were able to
discover enhancers by simply anchoring on the cross-cell-type DHS pattern of an element
with enhancer activity. Collectively, these results show that co-activation of DHSs reflected
in cross-cell-type patterning of chromatin accessibility is predictive of functional activity
within a specific cell type, and suggests more generally that DHSs with stereotyped cellular
patterning are likely to fulfill similar functions.
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To visualize the qualities and prevalence of different stereotyped cross-cellular DHS
patterns, we constructed a self-organizing map (SOM) of a random 10% subsample of DHSs
across all cell types and identified a total of 1,225 distinct stereotyped DHS patterns
(Supplementary Figs. 18, 19). Many of the stereotyped patterns discovered by the SOM
encompass large numbers of DHSs, with some counting >1000 elements (Supplementary
Fig. 20).

Taken together, the above results show that chromatin accessibility at regulatory DNA is
highly choreographed across large sets of co-activated elements distributed throughout the
genome, and that DHSs with similar cross-cell-type activation profiles are likely to share
similar functions.

Genetic variation in regulatory DNA linked to mutation rate
The DHS compartment as a whole is under evolutionary constraint, which varies between
different classes and locations of elements35, and may be heterogeneous within individual
elements36. To understand the evolutionary forces shaping regulatory DNA sequences in
humans, we estimated nucleotide diversity (π) in DHSs using publicly available whole-
genome sequencing data from 53 unrelated individuals37 (see Supplementary Methods). We
restricted our analysis to nucleotides outside of exons and RepeatMasked regions. To
provide a comparison with putatively neutral sites, we computed π in four-fold degenerate
synonymous positions (third positions) of coding exons. This analysis showed that, taken
together, DHSs exhibit lower π than four-fold degenerate sites, compatible with the action
of purifying selection.

Fig. 7a shows π for the DHSs of all analyzed cell types, with color coding to indicate the
origin of each cell type. Particularly striking is the distribution of diversity relative to
proliferative potential. DHSs in cells with limited proliferative potential have uniformly
lower average diversity than immortal cells, with the difference most pronounced in
malignant and pluripotent lines. This ordering is identical when highly mutable CpG
nucleotides are removed from the analysis.

If differences in π are due to mutation rate differences in different DHS compartments, the
ratio of human polymorphism to human-chimpanzee divergence should remain constant
across cell types. By contrast, differences in π due to selective constraint should result in
pronounced differences. To distinguish between these alternatives, we first compared
polymorphism and human-chimp divergence for DHSs from normal, malignant, and
pluripotent cells (Fig. 7b). Differences in polymorphism and divergence between these three
groups are nearly identical, compatible with a mutational cause. Second, raw mutation rate
is expected to affect rare and common genetic variation equally, whereas selection is likely
to have a larger impact on common variation. We consistently observe ~62% of SNPs in
DHSs of each group to have derived-allele frequencies below 0.05. DHSs in different cell
lines exhibit differences in SNP densities but not in allele frequency distribution (Fig. 7c).
Collectively, these observations are consistent with increased relative mutation rates in the
DHS compartment of immortal cells vs. cell types with limited proliferative potential,
exposing an unexpected link between chromatin accessibility, proliferative potential, and
patterns of human variation.

DISCUSSION
Since their discovery over 30 years ago, DNaseI hypersensitive sites have guided the
discovery of diverse cis-regulatory elements in the human and other genomes. Here we have
presented by far the most comprehensive map of human regulatory DNA, revealing novel
relationships between chromatin accessibility, transcription, DNA methylation, and the
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occupancy of sequence-specific factors. The wide spectrum of different cell and tissue types
covered by our data greatly expands the horizons of cell-selective gene regulation analysis,
enabling the recognition of systematic long-distance regulatory patterns, and previously
undescribed phenomena such as stereotyping of DHS activation and mutation rate variation
in normal vs. immortal cells. The extensive resources we have provided should greatly
facilitate future analyses, and stimulate new areas of investigation into the organization and
control of the human genome.

METHODS SUMMARY
DNaseI hypersensitivity mapping was performed using protocols developed by Duke7 or
UW8 on a total of 125 cell-types (Supplementary Table 1). Datasets were sequenced to an
average depth of 30 million uniquely mapping sequence tags (27-35 bp for UW and 20 bp
for Duke) per replicate. For uniformity of analysis, some cell type data sets that exceeded
40M tag depth were randomly sub sampled to a depth of 30 million tags. Sequence reads
were mapped using the Bowtie aligner, allowing a maximum of two mismatches. Only reads
mapping uniquely to the genome were used in our analyses. Mappings were to male or
female versions of hg19/GRCh37, depending on cell type, with random regions omitted.
Data were analyzed jointly using a single algorithm7 (Supplementary Methods) to localize
DNaseI hypersensitive sites. H3K4me3 ChIP-seq was performed using antibody 9751 (Cell
Signaling) on 1% formaldehyde crosslinked samples sheared by Diagenode bioruptor. Gene
expression measurements for each cell type were performed on Affymetrix Human Exon
microarrays. 5C experiments were performed as described31, 32. Transcription factor
recognition motif occurrences within DHSs were defined with FIMO38 at significance P <
10-5 using motif models from the TRANSFAC database.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. General features of the DHS landscape
a, Density of DNaseI cleavage sites for selected cell types, shown for an example ~350 kb
region. Two regions are shown to the right in greater detail. b, Left, distribution of
2,890,742 DHSs with respect to Gencode gene annotations. Promoter DHSs are defined as
the first DHS localizing within 1 kb upstream of a Gencode TSS. Right, distribution of
intergenic DHSs relative to Gencode TSSs. c, Distributions of the number of cell types, from
1 to 125 (y-axis), in which DHSs in each of four classes (x-axis) are observed. Width of
each shape at a given y-value shows the relative frequency of DHSs present in that number
of cell types.
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Figure 2. Transcription factor drivers of chromatin accessibility
a, DNaseI tag density is shown in red for a 175 kb region of Chr19. Below, normalized
ChIP-seq tag density for 45 ENCODE ChIP-seq experiments from K562 cells, with a
cumulative sum of the individual tag density tracks shown immediately below the K562
DNaseI data. b, Genome-wide correlation (R = 0.7943) between ChIP-seq and DNaseI tag
densities (log10) in K562 cells. c, Left, 94.4% of a combined 1,108,081 ChIP-seq peaks
from all TFs assayed in K562 cells fall within accessible chromatin (grey pie areas). Top,
three examples of TFs localizing almost exclusively within accessible chromatin. Bottom,
three factors from the KRAB-associated complex localizing partially or predominantly
within inaccessible chromatin
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Figure 3. Identification and directional classification of novel promoters
a, DNaseI (blue) and H3K4me3 (red) tag densities for K562 cells around annotated TSS of
ACTR3B. b, Averaged H3K4me3 tag density (red, right y-axis) and log DNaseI tag density
(blue, left y-axis) across 10,000 randomly selected Gencode TSSs, oriented 5’→3’. Each
blue and red curve is for a different cell-type, showing invariance of the pattern. c, Relation
of 113,615 promoter predictions to Gencode annotations, with supporting EST and CAGE
evidence (bar at right). d-f, Examples of novel promoters identified in K562; red arrow
marks predicted TSS and direction of transcription, with CAGE tag clusters, spliced ESTs
and Gencode annotations above. d, Novel TSS confirmed by CAGE and ESTs. e, Novel
TSS confirmed by CAGE, no ESTs. Note intronic location. f, Antisense prediction within
annotated gene.
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Figure 4. Chromatin accessibility and DNA methylation patterns
a, DNaseI sensitivity in 19 cell types with ENCODE Reduced Representation Bisulfite
Sequencing data. Inset box: accessibility (y-axis) decreases quantitatively as methylation
increases. Other DHSs (right) show low correlation between accessibility and methylation.
CpG methylation scale: Green, 0%; yellow, 50%; red, 100%. b, Model of TF-driven
methylation patterns in which methylation passively mirrors TF occupancy. c, Relationship
between TF transcript levels and overall methylation at cognate recognition sequences of the
same TFs. Lymphoid regulators in B-lymphoblastoid line GM06990 (left) and erythroid
regulators in the erythroleukemia line K562 (right). Negative correlation indicates that site-
specific DNA methylation follows TF vacation of differentially expressed TFs.
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Figure 5. A genome-wide map of distal DHS-to-promoter connectivity
a, Cross-cell-type correlation (red arcs, left y-axis) of distal DHSs and PAH promoter
closely parallels chromatin interactions measured by 5C-seq (blue arcs, right y-axis); black
bars indicate HindIII fragments used in 5C assays. Known (green) and novel (magenta)
enhancers confirmed in transfection assays are shown below. Enhancer at far right is not
separable by 5C since it lies within the HindIII fragment containing the promoter. b, Left,
proportions of 69,965 promoters correlated (R > 0.7) with 0 to >20 DHSs within 500 kb.
Right, proportions of 578,905 non-promoter DHSs (out of 1,454,901) correlated with 1 to >3
promoters within 500 kb. c, Pairing of canonical promoter families with specific motifs in
distal DHSs.
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Figure 6. Stereotyped regulation of chromatin accessibility
(a)-(e), Enhancers grouped by similar chromatin stereotypes. HS2 from the beta-globin locus
control region is at left. E1-E11 represent progressively weaker matches to the HS2
stereotype. E12-13 derive from matches to a different stereotype based on another K562
enhancer. (f), Experimental validation of enhancers detected by pattern matching. Bars
indicate fold-enrichment observed in transient assays in K562 relative to promoter-only
control; mean of testing in both orientations is shown. Red bars = data from two potent in
vivo enhancers, beta-globin LCR HS2 and HS3; the latter requires chromatinization to
function and is not active in transient assays. Gold bars = data from E1-E13 from (a)-(e)
above.
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Figure 7. Genetic variation in regulatory DNA linked to mutation rate
a, Mean nucleotide diversity (π, y-axis) in DHSs of 97 diverse cell types (x-axis) estimated
using whole-genome sequencing data from 53 unrelated individuals. Cell types are ordered
left-to-right by increasing mean π. Horizontal blue bar shows 95% confidence intervals on
mean π in a background model of four-fold degenerate coding sites. Note the enrichment of
immortal cells at right. b, Mean π (left y-axis) for pluripotent (yellow) vs. malignancy-
derived (red) vs. normal cells (light green), plotted side-by-side with human-chimp
divergence (right y-axis) computed on the same groups. Boxes indicate 25-75%-iles, with
medians highlighted. c, Both low- and high-frequency derived alleles show the same effect.
Density of SNPs in DHSs with derived allele frequency (DAF) <5% (x-axis) is tightly
correlated (R2 = 0.84) with the same measure computed for higher-frequency derived alleles
(y-axis). Color-coding is same as in panel (a).
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