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SUMMARY
The combinatorial cross-regulation of hundreds of sequence-specific transcription factors defines
a regulatory network that underlies cellular identity and function. Here we use genome-wide maps
of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising
connections among 475 sequence-specific transcription factors, and to analyze the dynamics of
these connections across 41 diverse cell and tissue types. We find that human transcription factor
networks are highly cell-selective and are driven by cohorts of factors that include regulators with
previously unrecognized roles in control of cellular identity. Moreover, we identify many widely
expressed factors that impact transcriptional regulatory networks in a cell-selective manner.
Strikingly, in spite of their inherent diversity, all cell type regulatory networks independently
converge on a common architecture that closely resembles the topology of living neuronal
networks. Together, our results provide the first description of the circuitry, dynamics, and
organizing principles of the human transcription factor regulatory network.

INTRODUCTION
Sequence-specific transcriptional factors (TFs) are the key effectors of eukaryotic gene
control. Human TFs regulate hundreds to thousands of downstream genes (Johnson et al.,
2007). Of particular interest are interactions in which a given TF regulates other TFs, or
itself. Such mutual cross-regulation among groups of TFs defines regulatory sub-networks
that underlie major features of cellular identity and complex functions such as pluripotency
(Boyer et al., 2005; Kim et al., 2008), development (Davidson et al., 2002) and
differentiation (Yun and Wold, 1996). On a broader level, cross-regulatory interactions
among the entire complement of TFs expressed in a given cell type form a core
transcriptional regulatory network, endowing the cell with systems-level properties that
facilitate the integration of complex cellular signals, while conferring additional nimbleness

© 2012 Elsevier Inc. All rights reserved.
¥correspondence: jstam@uw.edu, elbo@uw.edu.
*equal contribution

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Cell. Author manuscript; available in PMC 2013 September 14.

Published in final edited form as:
Cell. 2012 September 14; 150(6): 1274–1286. doi:10.1016/j.cell.2012.04.040.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and robustness (Alon, 2006). However, despite their central biological roles, both the
structure of core human regulatory networks and their component sub-networks are largely
undefined.

One of the main bottlenecks limiting generation of transcription factor regulatory networks
for complex biological systems has been that information is traditionally collected from
individual experiments targeting one cell-type and one transcription factor at a time
(Davidson et al., 2002; Yuh et al., 1994; Kim et al., 2008; ModENCODE et al., 2010;
Gerstein et al., 2010). For example, the sea urchin endomesoderm regulatory network was
constructed by individually perturbing the expression and activity of several dozen
transcription factors and analyzing the effect of these perturbations on the expression of
transcription factor genes containing putative cis-regulatory binding elements for these
factors (Davidson et al., 2002; Yuh et al., 1994). More recently, genome wide analysis
combining chromatin immunoprecipitation of individual TFs with high-throughput
sequencing (ChIP-seq) has been used to derive sub-networks of small numbers of TFs, such
as those involved in pluripotency (Kim et al., 2008) or larger scale networks combining
several dozen TFs (ModENCODE et al., 2010; Gerstein et al., 2010). However, such
approaches are limited by three major factors: (i) the availability of suitable affinity
reagents; (ii) the difficulty of interrogating the activities of multiple TFs within the same
cellular environment; and, perhaps most critically (iii) the sizable number of TFs and
cellular states that need to be studied. De novo network construction methods based on gene
expression correlations partly overcome the limitation of studying one TF at a time, but lack
directness and typically require several hundred independent gene expression perturbation
studies to build a network for one cell type (Basso et al., 2005; Carro et al., 2010). Similarly,
yeast one-hybrid assays offer a high-throughput approach for identifying cis-regulatory
element binding partners (Walhout et al., 2006; Reece-Hoyes et al., 2011). However, such
assays lack native cellular context, limiting their direct utility for building cell type-specific
networks. Given these experimental limitations, only a handful of well-described multi-
cellular transcriptional regulatory networks have been defined, and those that do exist are
often incomplete despite the numerous experiments and extended time (typically years)
needed to construct them (Davidson et al., 2002; Basso et al., 2005; Boyer et al., 2005; Kim
et al., 2008; ModENCODE et al., 2010; Gerstein et al., 2010).

Given that the human genome encodes >1,000 TFs (Vaquerizas et al., 2009), and that human
cellular diversity spans hundreds of different cell types and an even greater number of
cellular states, we sought to develop an accurate and scalable approach to transcriptional
regulatory network analysis suitable for application to any cellular or organismal state. The
discovery of DNaseI footprinting over 30 years ago (Galas and Schmitz, 1978)
revolutionized the analysis of regulatory sequences in diverse organisms, and directly
enabled the discovery of the first human sequence-specific transcription factors (Dynan and
Tjian, 1983). In the context of living nuclear chromatin, DNaseI treatment preferentially
cleaves the genome within highly accessible active regulatory DNA regions, creating
DNaseI hypersensitive sites (DHSs) (Wu et al., 1979; Kuo et al., 1979; Wu, 1980; Stalder et
al., 1980). Within DHSs, DNaseI cleavage is not uniform but is rather punctuated by
sequence-specific regulatory factors that occlude bound DNA, leaving ‘footprints’ that
demarcate TF occupancy at nucleotide resolution (Hesselberth et al., 2009; Pfeifer and
Riggs, 1991). DNaseI footprinting is a well-established method for identifying direct
regulatory interactions, and provides a powerful generic approach for assaying the
occupancy of specific sequence elements with cis-regulatory functions (Karin et al., 1984;
Kadonaga et al., 1987).

DNaseI footprinting has been applied widely to study regulatory interactions between TFs,
and to identify cell- and lineage-selective transcriptional regulators (Dynan and Tjian, 1983;
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Karin et al., 1984; Tsai et al., 1989). In the context of the ENCODE Project, we applied
digital genomic footprinting (Hesselberth et al., 2009) to delineate millions of human
DNaseI footprints genome-wide in 41 diverse cell types. Combining DNaseI footprints with
defined TF recognition sequences accurately and quantitatively recapitulates ChIP-seq data
for individual TFs, while simultaneously interrogating potentially all DNA-binding factors
in a single experiment (Neph et al., 2012).

By performing systematic analysis of TF footprints in the proximal regulatory regions of
each transcription factor gene, we develop a foundational experimental paradigm for
comprehensive, unbiased mapping of the complex network of regulatory interactions
between human TFs. In such networks, TFs comprise the network ‘nodes’, and the
regulation of one TF by another the interactions or network ‘edges’. Furthermore, iterating
this paradigm across diverse cell types provides a powerful system for analysis of
transcription factor network dynamics in a complex organism. Here, we use genome-wide
maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network
comprising connections among 475 sequence-specific transcription factors, and analyze the
dynamics of these connections across 41 diverse cell and tissue types.

RESULTS
Comprehensive mapping of transcription factor networks in diverse human cell types

To generate transcription factor regulatory networks in human cells, we analyzed genomic
DNaseI footprinting data from 41 diverse cell and tissue types (Neph et al., 2012). Each of
these 41 samples was treated with DNaseI, and sites of DNaseI cleavage along the genome
were analyzed using high-throughput sequencing. At an average sampling depth of ~500
million DNaseI cleavages per cell type (of which ~ 273 million mapped to unique genomic
positions), we identified an average of ~1.1 million high-confidence DNaseI footprints per
cell type (range 434,000 to 2.3 million at a False Discovery Rate of 1% (FDR 1%) (Neph et
al., 2012)). Collectively, we detected 45,096,726 footprints, representing cell-selective
binding to ~8.4 million distinct 6–40bp genomic sequence elements. We inferred the
identity of factors occupying DNaseI footprints using well-annotated databases of
transcription factor binding motifs (Wingender et al., 1996; Bryne et al., 2008; Newburger et
al., 2009) (Methods), and confirmed that these identifications matched closely and
quantitatively with ENCODE ChIP-seq data for the same cognate factors (Neph et al.,
2012).

To generate a TF regulatory network for each cell type, we analyzed actively bound DNA
elements within the proximal regulatory regions (i.e., all DNaseI hypersensitive sites within
a 10kb interval centered on the transcriptional start site) of 475 transcription factor genes
with well-annotated recognition motifs (Wingender et al., 1996; Bryne et al., 2008;
Newburger et al., 2009) (Figure 1A). Repeating this process for every cell type disclosed a
total of 38,393 unique, directed (i.e., TF-to-TF) regulatory interactions (edges) among the
475 analyzed TFs, with an average of 11,193 TF-to-TF edges per cell type. Given the
functional redundancy of a minority of DNA binding motifs (Berger et al., 2008), in certain
cases multiple factors could be designated as occupying a single DNaseI footprint. However,
most commonly, mappings represented associations between single TFs and a specific DNA
element. Because DNaseI hypersensitivity at proximal regulatory sequences closely parallels
gene expression (The ENCODE Project Consortium, 2012), the annotation process we
utilized naturally focuses on the expressed TF complement of each cell type, enabling the
construction of a comprehensive transcription regulatory network for a given cell type with a
single experiment.
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De novo-derived networks accurately recapitulate known TF-to-TF circuitry
To assess the accuracy of cellular TF regulatory networks derived from DNaseI footprints,
we analyzed several well-annotated mammalian cell type-specific transcriptional regulatory
sub-networks (Figure 1B–C). The muscle-specific factors MyoD, Myogenin (MYOG),
MEF2A, and MYF6 form a network vital for specification of skeletal muscle fate and
control of myogenic development and differentiation, which was uncovered using a
combination of genetic and physical studies, including DNaseI footprinting (Naidu et al.,
1995; Yun and Wold, 1996; Ramachandran et al., 2008). Figure 1B juxtaposes the known
regulatory interactions between these factors determined in the aforementioned studies
(Figure 1B, top), with the nearly identical interactions derived de novo from analysis of the
network computed using DNaseI footprints mapped in primary human skeletal myoblasts
(HSMM) (Figure 1B, bottom).

OCT4, NANOG, KLF4 and SOX2 together play a defining role in maintaining the
pluripotency of embryonic stem (ES) cells (Takahashi and Yamanaka, 2006; Takahashi et
al., 2007), and a network comprising the mutual regulatory interactions between these
factors has been mapped through systematic studies of factor occupancy by ChIP-seq in
mouse ES cells (Kim et al., 2008) (Figure 1C, top). A nearly identical sub-network emerges
from analysis of the transcription factor network computed de novo from DNaseI footprints
in human ES cells (Figure 1C, bottom).

Critically, both the well-annotated muscle and ES sub-networks are best matched by
footprint-derived networks computed specifically from skeletal myoblasts and human ES
cells, respectively, vs. other cell types (Figure 1D–E). These findings indicate that network
relationships between transcription factors derived de novo from genomic DNaseI
footprinting accurately recapitulate well-described cell type-selective transcriptional
regulatory networks generated using multiple experimental approaches.

Transcription factor regulatory networks show marked cell-selectivity
We next analyzed systematically the dynamics of TF regulatory networks across cell types.
475 transcription factors theoretically have the potential for 225,625 combinations of TF-to-
TF regulatory interactions or network edges. However, only a fraction of these potential
edges are observed in each cell type (~5%), and most are unique to specific cell types
(Supplemental Figure S1A).

To visualize the global landscape of cell-selective vs. shared regulatory interactions, we first
computed the broad landscape of network edges that are either specific to a given cell type,
or are found in networks of two or more cell types (Figure 2, Supplemental Table S1). This
revealed that regulatory interactions were in general highly cell-selective, though the
proportion of cell-selective interactions varied from cell type to cell type. Network edges
were most frequently restricted to a single cell type, and collectively the majority of edges
were restricted to 4 or fewer cell types (Supplemental Figure S1A). By contrast, only 5% of
edges were common to all cell types (Supplemental Figure S1A). Interestingly, when
comparing networks, we found more common edges than common DNaseI footprints
(Supplemental Figure S1B,C), implying that a given transcriptional regulatory interaction
can be generated using distinct DNA binding elements in different cell types.

To explore the regulatory interaction dynamics of limited sets of related factors we plotted
the regulatory network edges connecting four hematopoietic regulators and four
pluripotency regulators in six diverse cell types (Figure 3A). This analysis clearly
highlighted the role of cell-type specific factors within their cognate cell types: regulatory
interactions between pluripotency factors within the ES cell network, and hematopoietic
factors within the network of hematopoietic stem cells (Figure 3A). Next, we plotted the
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complete set of regulatory interactions amongst all 475 edges between the same six diverse
cell types, exposing a high degree of regulatory diversity (Figure 3B, Supplemental Table
S1).

Edges unique to a cell type typically form a well-connected sub-network (Supplemental
Figure S1D–F, Supplemental Table S2), implying that cell type-specific regulatory
differences are not driven merely by the independent actions of a few transcription factors,
but rather by organized TF sub-networks. In addition, the density of cell-selective networks
varies widely between cell types (e.g., compare ES cells to skeletal myoblasts in Figure 3B).
These observations underscore the importance of using cell type-specific regulatory
networks when addressing specific biological questions.

Functionally related cell types share similar core transcriptional regulatory networks
We next sought to determine the degree of relatedness between different transcription factor
networks. To obtain a quantitative global summary of the factors contributing to each cell
type specific network, we computed for each cell type the normalized network degree
(NND) – a vector which encapsulates the relative number of interactions observed in that
cell type for each of the 475 TFs (Alon, 2006). To capture the degree to which different cell
type networks utilize similar transcription factors, we clustered all cell type networks based
on their NND vector (Figure 4A). The resulting network clusters – obtained from an
unbiased analysis – strikingly parallel both anatomical and functional cell type groupings
into epithelial and stromal cells; hematopoietic cells; endothelia; and primitive cells
including fetal cells and tissues, ES cells, and malignant cells with a ‘de-differentiated’
phenotype (Figure 4A; compare the manually curated groupings in Figure 2). This result
suggests that transcriptional regulatory networks from functionally similar cell-types are
governed by similar factors. Furthermore, this result suggests a framework for understanding
how minor perturbations in network composition might enable trans-differentiation among
related cell-types (Graf and Enver, 2009).

To identify the individual transcription factors driving the clustering of related cell type
networks, we computed the relative NND (i.e., the normalized number of connections) of
each TF across the 41 cell types. This approach uncovered numerous specific factors with
highly cell-selective interaction patterns, including known regulators of cellular identity
important to functionally related cell types (Figure 4B). For instance, PAX5 is most highly
connected in B-cell regulatory networks, agreeing with its function as a major regulator of
B-lineage commitment (Nutt et al., 1999). Similarly, the neuronal developmental regulator
POU3F4 (Shimazaki et al., 1999) plays a prominent role specifically in hippocampal
astrocyte and fetal brain regulatory networks, while the cardiac developmental regulator
GATA4 (Molkentin et al., 1997) shows the highest relative network degree in cardiac and
great vessel tissue (fetal heart, cardiomyocytes, cardiac fibroblasts, and pulmonary artery
fibroblasts).

In addition to these known developmental regulators, the network analysis implicated many
regulators with previously unrecognized roles in specification of cell identity. For instance,
HOXD9 is highly connected specifically in endothelial regulatory networks, and the early
developmental regulator GATA5 (MacNeill et al., 2000) appears to play a predominant role
in the fetal lung network (Figure 4B), providing functional insight into the role of GATA5
as a lung tissue biomarker (Xing et al., 2010). In addition to factors with strong cell-
selective connectivity, we found a number of TFs with prominent roles in all 41 cell type
networks, including several known ubiquitous transcriptional and genomic regulators such
as SP1, NFYA, CTCF and MAX (Supplemental Figure S2).
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Together, the above results demonstrate the ability of transcriptional networks derived from
genomic DNaseI footprinting to pinpoint known cell-selective and ubiquitous regulators of
cellular state, and to implicate analogous yet unanticipated roles for many other factors. It is
notable that the aforementioned results were derived independently of gene expression data,
highlighting the ability of a single experimental paradigm (genomic DNaseI footprinting) to
elucidate multiple intricate transcriptional regulatory relationships.

Network analysis reveals cell-type specific behaviors for widely expressed TFs
Many transcription factors are expressed to varying degrees in a number of different cell
types (Vaquerizas et al., 2009). A major question is whether the function of widely
expressed factors remains essentially the same in different cells, or whether such factors are
capable of exhibiting important cell-selective actions. To explore this question, we sought to
characterize the regulatory diversity between different cell types within the same lineage.
Hematopoietic lineage cells have been extensively characterized at both the phenotypic and
the molecular level, and a cadre of major transcriptional regulators has been defined,
including TAL1/SCL, PU.1, ELF1, HES1, MYB, GATA2 and GATA1 (Orkin, 1995;
Swiers et al., 2006). Many of these factors are expressed to varying degrees across multiple
hematopoietic lineages and their constituent cell types.

We analyzed de novo-derived sub-networks comprising the aforementioned seven regulators
in five hematopoietic and one non-hematopoietic cell type (Figure 5A). For each cell type
sub-network, we also mapped the normalized outdegree (i.e., the number of outgoing
connections) for each factor (Figure 5A). This analysis revealed both subtle and stark
differences in the organization of the 7-member hematopoietic regulatory sub-network that
reflected the biological origin of each cell-type. For example, the early hematopoietic fate
decision factor PU.1 appears to play the largest role in the sub-networks generated from
hematopoietic stem cells (CD34+) and promyelocytic leukemia (NB4) cells (Figure 5A).
The erythroid-specific regulator GATA1 appears as a strong driver of the core TAL1/PU.1/
HES1/MYB sub-network specifically within erythroid cells (Figure 5A), consistent with its
defining role in erythropoiesis. In both B-cells and T-cells, the sub-network takes on a
directional character, with PU.1 in a superior position. By contrast, the network is largely
absent in non-hematopoietic cells (muscle, HSMM) (Figure 5A, bottom right). These
findings demonstrate that analysis of the network relationships of major lineage regulators
provides a powerful tool for uncovering subtle differences in transcriptional regulation that
drive cellular identity between functionally similar cell-types.

We next extended this analysis to determine whether we could identify commonly expressed
factors that manifest cell-type specific behaviors. For example, the retinoic acid receptor-
alpha (RAR-α) is a constitutively-expressed factor involved in numerous developmental and
physiological processes (Sucov et al., 1996). Rather than simply measuring the degree of
connectivity of RAR-α to other factors across different cell types, we sought to quantify the
behavior of RAR-α within each cellular regulatory network by determining its position
within feed-forward loops (FFLs). Feed-forward loops represent one of the most important
network motifs in biological and regulatory systems and comprise a three node structure in
which information is propagated forward from the top node through the middle to the
bottom node, with direct top node-to-bottom node reinforcement (Milo et al., 2002; Alon,
2006). For each cell type, we quantified the number of feed-forward loops containing RAR-
α at each of the three different positions (top vs. middle vs. bottom; Figure 5B, top). In most
cell-types, RAR-α chiefly participates in feed-forward loops at ‘passenger’ positions 2 and 3
(Figure 5B). However, within blood and endothelial cells, RAR-α switches from being a
passenger to being a driver (top position) of FFLs. Strikingly, in acute promyelocytic
leukemia (APL) cells, RAR-α acts as a uniquely potent driver of feed-forward loops,
occurring exclusively in the driver position – a feature unique among all cell types (Figure
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5B). APL is characterized by an oncogenic t(15;17) chromosomal translocation which
results in a RAR-α/PML fusion protein that misregulates RAR-x003B1; target sites
(Grignani et al., 1993; Grignani et al., 1998). Our results suggest that in APL cells, RAR-α
is additionally altering the basic organization of the regulatory network. Critically, we
identified the prominent role of RAR-α in APL using DNaseI footprint-driven network
analysis without any prior knowledge of its role in APL cells. This suggests that network
analysis is capable of deriving vital pathogenic information about specific factors in
abnormal cell types, given a sufficient analyzed spectrum of normal cellular networks. On a
more general level, the aforementioned results show clearly that marked cell-selective
functional specificities of commonly expressed proteins can be exposed by analyzing factors
within the context of their peers.

The common ‘neural’ architecture of human transcription factor regulatory networks
Complex networks from diverse organisms are built from a set of simple building blocks
termed network motifs (Milo et al., 2002). Network motifs represent simple regulatory
circuits, such as the feed-forward loop described above. The topology of a given network
can be reflected quantitatively in the normalized frequencies (normalized z-score) of
different network motifs. Specific well-described motifs including FFL, ‘clique’, ‘semi-
clique’, ‘regulated mutual’ and ‘regulating mutual’ are recurrently found at higher than
expected frequency within diverse biological networks (Milo et al., 2002; Milo et al., 2004).
We therefore sought to analyze the topology of the human transcription factor regulatory
network, and to compare it with those of well-annotated multi-cellular biological networks.

We first computed the relative frequency and relative enrichment or depletion of each of the
13 possible three-node network motifs within each cell type regulatory network. Next, we
compared the results for each cell type network with the relative enrichment of 3-node
networks motifs found in perhaps the best annotated multi-cellular biological network, the
C. elegans neuronal connectivity network (White et al., 1986). This comparison revealed
striking similarity between the topologies of human TF networks and the C. elegans
neuronal network (Figure 6A, Supplemental Table S3). Remarkably, in spite of their cell-
selectivity, the topologies of each TF network were nearly identical. Notably, the human TF
regulatory network topology also closely resembles that of other well-described networks
including, the sea-urchin endomesoderm specification network (Davidson et al., 2002), the
Drosophila developmental transcriptional network (Serov et al., 1998), and the mammalian
signal transduction network (Milo et al., 2004) (Supplemental Figure S3A), consistent with
universal principles for multicellular biological information processing systems (Milo et al.,
2004).

To test the sensitivity of the above findings to the manner in which the human
transcriptional regulatory networks were determined, we re-computed this network solely
from scanned transcription factor binding sites within the promoter-proximal regions of each
TF gene, without considering whether the motifs were localized within DNaseI footprints.
Using this approach, the remarkable similarity of the footprint-derived TF networks to the
neuronal network was almost completely lost (Figure 6B). This result affirms the criticality
of in vivo footprints for biologically meaningful network inference.

Next, we sought to determine if the observed similarity to the neuronal network was a
collective property of human transcription factor networks. To test this, we computed a
transcriptional regulatory network from the combined regulatory interactions of all 41 cell
types and determined the enrichment of network motifs within this network. The resulting
network topology diverges considerably from that of the neuronal network (Figure 6C), far
more so than was observed for any individual cell type (Figure 6A). This result suggests that
the regulatory interactions within each cell type network are independently balanced to
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achieve a specific architecture, and that pooling multiple cellular networks together degrades
this balance.

Finally, we asked whether a common core of regulatory interactions might be driving the
conserved network architecture, by comparing feed-forward loops from biologically similar
cell types with one another. This comparison revealed marked diversity among different
cellular TF networks (Figure 6D,E), considerably exceeding that observed among individual
edges (Supplemental Figure S3C,D). Indeed, only ~0.1% of all observed FFLs across 41 cell
types (784 / 558,841) were common to all cell types (Figure 6F and Supplemental Figure
S3E). Moreover, only a minority of the TFs represented within a given cellular network
contribute to the enriched network motifs (Supplemental Figure S3F). These findings
indicate that the conserved ‘neuronal’ network architecture (Figure 6A) of the human TF
regulatory network is specified independently in each cell type using a distinct set of
balanced regulatory interactions.

DISCUSSION
Transcription factor regulatory networks are foundational to biological systems.
Collectively, our results highlight the power of regulatory networks derived from genomic
DNaseI footprint maps to provide accurate large-scale depictions of regulatory interactions
in human cells, and they suggest such interactions are governed by a core set of organizing
principles shared with other multicellular information processing systems.

In a classic treatise, Waddington proposed that the epigenetic landscape of a cell is
‘buttressed’ by complex interactions among multiple regulatory genes (Waddington 1939,
elaborated in Waddington, 1957). These genes – now recognized as sequence-specific
transcriptional regulators – form an extended ‘cognitive’ network that enables the
simultaneous integration of multiple internal and external cues, and conveys this information
to specific effector genes along the genome. Consequently, transcriptional regulatory
networks influence both the current chromatin landscape of a cell, as well as its epigenetic
state, imparting a type of ‘memory’ that may impact subsequent cellular fate decisions
(Waddington 1957; Groudine and Weintraub, 1982). Such characteristics render
transcription factor regulatory networks ideal for governing complex processes such as
pluripotency (Boyer et al., 2005; Kim et al., 2008), development (Davidson et al., 2002) and
differentiation (Yun and Wold, 1996). However, despite their central role in human
pathology and physiology, human transcriptional regulatory networks are presently poorly
understood.

The networks we describe here for 41 diverse cell types represent the first genome-scale
human transcriptional regulatory networks, and are among the largest described in any
organism. The derivation of regulatory networks from genomic DNaseI footprint maps
provides a general, scalable solution for mapping and analyzing cell-selective transcriptional
regulatory networks in complex multi-cellular organisms. By comparison, generation of
networks of this size across 41 cell-types using traditional approaches such as perturbation
or ChIP-seq would have required nearly 20,000 individual experiments. By contrast, the
approach we describe can readily scale beyond the 475 factors analyzed in the current study,
and is constrained only by the availability of accurate TF recognition sequences.

Our analysis of transcriptional regulatory interactions in a network context has uncovered
several novel features of human transcriptional regulation, some quite striking.

First, we observed that human transcriptional regulatory networks are markedly cell-type
specific, with only ~5% of all regulatory interactions common across the 41 tested cell
types. This finding highlights the regulatory diversity within humans, and underscores the
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importance of analyzing cell-selective regulatory networks when addressing specific
biological questions.

Second, by detecting factors that predominantly contribute to the transcriptional regulatory
networks of only one or a few cell types, we identified both known and novel regulators of
cellular identity (Figure 4B). Differences between cell types thus encode a surprisingly rich
landscape of information concerning differentiation and developmental processes, and this
landscape can be systematically mined for regulatory insights.

Third, we found that commonly expressed TFs within a given cell lineage play distinct roles
in the governance of regulatory networks of different cells within that lineage. Our analysis
discovered that in acute promyelocytic leukemia cells the widely expressed RAR-α shifts
from being a passenger of feed-forward loops (FFLs) to being a strong driver of FFLs. This
finding provides novel insights into the broader – and more fundamental – regulatory
alterations that accompany the RAR-α/PML fusion protein unique to acute promyelocytic
leukemia. On a general level, our results show that commonly expressed proteins may
display highly cell-selective actions, and that such activities may be brought to light by
analyzing transcription factors in the context of their peers.

Finally, in marked contrast to the high regulatory diversity between cell types, we found that
all cell type regulatory networks converge on a common network architecture that closely
mirrors the topology of the C. elegans neuronal connectivity network and those of other
multicellular information processing systems (Milo et al., 2004), highlighting a fundamental
similarity in the structure and organizing principles of these biological systems. Strikingly,
this common architecture is independently fashioned in each cell type and results from the
delicate balance of distinct regulatory interactions.

Despite the experimental and computational advantages and successes of our approach, a
number of additional steps could be used to refine and improve our regulatory interaction
networks. First, as noted above, our approach is limited by the availability of recognition
sequences for specific TFs. The pending availability of both more and higher quality
recognition sequences through approaches such as Protein Binding Microarrays (Berger et
al., 2008; Badis et al., 2009) and SELEX-seq (Jolma et al., 2010; Slattery et al., 2011)
promises to expand considerably the horizons of human transcriptional network analysis.
Such refined data may enable differentiation of factors that currently appear to bind similar
recognition sequences. Second, the model that we described undervalues the role of distal
regulatory elements, which can exert major influences on gene expression. Because
enhancers can act over long distances, association of a given distal regulatory element with a
specific TF gene is at present difficult. We therefore focused on footprints in DHSs within a
10kb region centered on the transcriptional start site (TSS), in which most regulatory
interactions are expected to be directed to the local TSS. Although large numbers of distal
regulatory DNA regions marked by DNaseI hypersensitive sites are now available through
the ENCODE (ENCODE Project Consortium, 2012) and Roadmap Epigenomics (Bernstein
et al., 2010) projects, the assignment of distal regulatory elements to their cognate gene(s)
has proven to be a formidable challenge. Third, the approach we utilized does not take into
account indirect regulatory interactions (e.g., tethering) that may affect the expression of a
given TF gene (Davidson et al., 2002; Rigaud et al., 1991; Biddie et al., 2011). Systematic
cross-comparisons between DNaseI footprint and TF ChIP-seq data drawn from the same
cell type should enable recognition of such indirect interactions and derivation of rules (e.g.,
tethering partners) that may enable larger scale modeling of such interactions (Neph et al,
2012).
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In order to interpret human regulatory networks at the organismal level, it will be necessary
to analyze cell-selective regulatory networks within the context of surrounding tissues
(Barabási and Oltvai, 2004). As initially described by Spemann over 90 years ago, the
identity of a given cell can be largely dictated by its surrounding tissue (Spemann, 1918).
Consequently, during both normal development and physiological function, the regulatory
landscape of one cell type may become intricately dependent upon that of its neighbors
(reviewed in Waddington, 1940). In this context, it is notable that we observed large
diversity between the regulatory landscapes of distinct lung cell types (Figure 6E)
highlighting the complexity that exists within neighboring tissue from the same organ.

In summary, our results provide the first description of the circuitry, dynamics, and
organizing principles of the human transcription factor regulatory network. Systematically
applied, the approach we have described has the potential to expand greatly our horizons on
the mechanism, architecture, and epistemology of human gene regulation.

EXPERIMENTAL PROCEDURES
Regulatory network construction

We mapped motif-binding protein information found in TRANSFAC to 538 coding genes,
using GeneCards (Rebhan et al., 1997) and UniProt Knowledgebase (Magrane et al., 2011).
Some genes were indistinguishable when viewed from a potential motif-binding event
perspective, as their respective gene products were annotated as binders to the same set of
motif templates by TRANSFAC. In such cases, we chose a single gene, randomly, as a
representative and removed others which reduced the number of genes from 538 to 475.
Networks built by removing the first redundant motif, alphabetically, or by including all
redundant motifs showed very similar properties to the one described in this paper
(Supplemental Figure S3B and data not shown).

We symmetrically padded the transcriptional start sites (TSSs) of the remaining genes by
5,000 nt and scanned for predicted TRANSFAC motif binding sites using FIMO (Bailey et
al., 2009), version 4.6.1, with a maximum p-value threshold of 1e-5 and defaults for other
parameters. For each cell type, we filtered putative motif binding sites to those that
overlapped footprints as previously described (Neph et al., 2012). Each network contained
475 vertices, one per gene. A directed edge was drawn from a gene-vertex to another when a
motif instance, potentially bound by the first gene's protein product, was found within a
DNaseI footprint contained within 5,000 nt of the second gene's TSS, indicating regulatory
potential. Supplemental Table S3 shows the number of such edges in every cell-type specific
network.

Network Clustering
We counted the total number edges for every TF gene-vertex (sum of in and out edges) in a
cell type and calculated the proportion of edges for that TF relative to all edges (normalized
network degree (NND)). We computed the pairwise euclidean distances between cell types
using the NND vectors and grouped the cell types using Ward clustering (Ward, 1963). We
observed similar cluster patterns when comparing normalized in-degree, normalized out-
degree, or un-normalized total degree (results not shown).

Triad Significance Profiles
We removed self-edges from every network and used the mfinder software tool for network
motif analysis (Milo et al., 2004). A Z-score was calculated over each of 13 network motifs
of size 3 (3-node network motifs), using 250 randomized networks of the same size to
estimate a null. We vectorized Z-scores from every cell type and normalized each to unit
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length to create triad significance profiles (TSP) as described in Milo et al., 2004. We
computed the average TSP over all cell-type specific regulatory networks and compared to
the TSP of the highly-curated multi-cellular information processing networks described in
Milo et al., 2004.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Extensive transcription factor regulatory networks for 41 human cell and tissue
types

• Transcription factor networks are highly cell-selective and highlight novel
regulators of cellular identity

• Network analysis identifies cell-selective functions for commonly-expressed
regulators

• The circuit architecture of human transcription factor networks mirrors living
neuronal networks
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Figure 1. Construction of comprehensive transcriptional regulatory networks
(A) Schematic for construction of regulatory networks using DNaseI footprints.
Transcription factor (TF) genes represent network nodes. Each TF node has regulatory
inputs (TF footprints within its proximal regulatory regions), and regulatory outputs
(footprints of that TF in the regulatory regions of other TF genes). Inputs and outputs
comprise the regulatory network interactions ‘edges’. For example: (1) In Th1 cells, the
IRF1 promoter contains DNaseI footprints matching four regulatory factors (STAT1,
CNOT3, SP1 and NFKB). (2) In Th1 cells, IRF1 footprints are found upstream of many
other genes (for example, GABP1, IRF7, STAT6). (3) The same process is iterated for every
TF gene in that cell type, enabling compilation of a cell type network comprising nodes (TF
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genes) and edges (regulatory inputs and outputs of TF genes). (4) Network construction is
carried out independently using DNaseI footprinting data from each of 41 cell types,
resulting in 41 independently-derived cell type networks.
(B and C) Comparison of well-annotated vs. de novo-derived regulatory sub-networks.
(B) Muscle sub-network. Top, experimentally-defined regulatory sub-network for major
factors controlling skeletal muscle differentiation and transcription. Arrows indicate
direction(s) of regulatory interactions between factors. Bottom, regulatory sub-network
derived de novo from the DNaseI footprint-anchored network of skeletal myoblasts closely
matches the experimentally annotated network.
(C) Pluripotency sub-network. Top, regulatory sub-network for major pluripotency factors
defined experimentally in mouse ES cells (Kim et al. 2008). Bottom, regulatory sub-network
derived de novo from human ES cells is virtually identical to the annotated network.
(D,E) De novo-derived sub-networks in (B) and (C) match the annotated networks in a
cellspecific fashion. Vertical axes: Jaccard index, a measure of network similarity,
comparing the annotated sub-network with regulatory interactions between the four factors
derived de novo from each of 41 cell types independently (horizontal axes). For the
annotated muscle subnetwork, the highest similarity is seen in skeletal myoblasts, followed
by differentiated skeletal muscle. By contrast, sub-networks computed from fibroblasts are
largely devoid of relevant interactions. For the annotated pluripotency sub-network, the
highest similarity is seen in human ES cells (H7-ESC).
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Figure 2. Cell-specific vs. shared regulatory interactions in TF networks of 41 diverse cell types
Shown for each of 41 cell types are schematics of cell type-specific vs. non-specific (black)
regulatory interactions between 475 TFs. Each half of each circular plot is divided into 475
points (not visible at this scale), one for each transcription factor. Lines connecting the left
and right half-circles represent regulatory interactions between each factor and any other
factors with which it interacts in the given cell type. Yellow lines represent TF-to-TF
connections that are specific to the indicated cell type. Black lines represent TF-to-TF
connections that are seen in two or more cell types. The order of TFs along each half-
circular axis is shown in Supplementary Table 1, and represents a sorted list (descending
order) of their degree (i.e., number of connections to other TFs) in the ES cell network, from

Neph et al. Page 18

Cell. Author manuscript; available in PMC 2013 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



highest degree on top (SP1) to lowest degree on bottom (ZNF354C). Cell-types are grouped
based on their developmental and functional properties. Insert on bottom right shows a
detailed view of the human ES cell network, and highlights the interactions of four
pluripotent (KLF4, NANOG, POU5F1, SOX2) and four constitutive factors (SP1, CTCF,
NFYA, MAX) with purple and green edges, respectively.
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Figure 3. Transcriptional regulatory networks show marked cell-type specificity
(A) Cross-regulatory interactions between four pluripotency factors and four hematopoietic
factors in regulatory networks of six diverse cell types. All eight factors are arranged in the
same order along each axis. Regulatory interactions (i.e., from regulator to regulated) are
shown by arrows in clock-wise orientation. Cell type-specific edges are colored as indicated,
whereas regulatory interactions present in two or more cell type networks are shown in grey.
(B) Cross-regulatory interactions between all 475 TFs in regulatory networks of six diverse
cell types. The 475 TFs are arranged in the same order along each axis, regulatory
interactions directed clockwise. Edges unique to a given cell type network are colored as
indicated in the legend whereas regulatory interactions present in two or more networks are
colored grey. Interactions present in all six cell type networks are colored black. (See also
Supplementary Figure S1 and Supplementary Table S2).
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Figure 4. Functionally related cell types share similar core transcriptional regulatory networks
(A) Clustering of cell type networks by normalized network degree (NND). For each of 475
TFs within a given cell type network, the relative number of edges was compared between
all 41 cell-types using a Euclidean distance metric and Ward clustering. Cell types are
colored based on their physiological and/or functional properties.
(B) Relative degree of master regulatory TFs in cell type networks. Shown is a heatmap
representing the relative normalized degree of the indicated TFs between each of the 41 cell
types. For a given TF and cell type, high relative degree indicates high connectivity with
other TFs in that cell type. Note that the relative degree of known regulators of cell fate such
as MYOD, OCT4, or MYB is highest in their cognate cell type or lineage. Similar patterns
were found for other TFs without previously recognized roles in specification of cell identiy.
(See also Supplemental Figure S2).
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Figure 5. Cell-selective behaviors of widely expressed TFs
(A) Shown are regulatory sub-networks comprising edges (arrows) between seven major
hematopoietic regulators in five hematopoietic and one non-hematopoietic cell types. For
each TF, the size of the corresponding colored oval is proportional to the normalized out-
degree (i.e., out-going regulatory interactions) of that factor within the complete network of
each cell type. The early hematopoietic fate decision factor PU.1 appears to play the largest
role in hematopoietic stem cells (CD34+) and in promyelocytic leukemia (NB4) cells. The
erythroidspecific regulator GATA1 appears as a strong driver of the core TAL1/PU.1/HES1/
MYB network specifically within erythroid cells. In both B-cells and T-cells, the sub-
network takes on a directional character, with PU.1 in a superior position. By contrast, the
network is largely absent in non-hematopoietic cells (muscle, HSMM, bottom right).
(B) Heatmap showing the frequency with which the retinoic acid receptor-alpha (RAR-α) is
positioned as a driver (top) or passenger (middle or bottom) within feed-forward loops
(FFLs) mapped in 41 cell type regulatory networks. Note that in most cell-types, RAR-α
participates in feed-forward loops at ‘passenger’ positions 2 and 3. However, within blood
and endothelial cells, RAR-α switches from being a passenger of FFLs to being a driver (top
position) of FFLs. In acute promyelocytic leukemia cells (NB4), RAR-α acts exclusively as
a potent driver of feed-forward loops. Cell types are arranged according to the clustered
ordering in Figure 4.
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Figure 6. Conserved architecture of human transcription factor regulatory networks
(A) Shown is the relative enrichment or depletion of the 13 possible three-node architectural
network motifs within the regulatory networks of each cell type (red lines), compared with
the relative enrichment of the same motifs in the C. elegans neuronal connectivity network.
Note that the network architecture of each individual cell type closely mirrors that of the
living neuronal network (average summed squared error (SSE) of only 0.0705).
(B) Enrichment of each triad network motifs for a transcription factor network computed
using only motif scan predictions within +/− 5kb of TF promoters (brown line). The
resulting network bares little resemblance to the C. elegans network (blue line) (SSE of
2.536).
(C) The relative enrichment of different triad network motifs is shown for a transcription
factor regulatory network generated by pooling DNaseI footprints from all 41 tested cell
types into a single archetype (orange line). The resulting topology diverges considerably
from that of the neuronal network, far more so than was observed for any individual cell
type (SSE of 0.4308).
(D – E) Network architectures are highly cell-specific
(D) Overlap of feed-forward loops (FFLs) identified in three different progenitor cell types -
embryonic stem cells (H7-hESC), hematopoietic stem cells (CD34+) and skeletal muscle
myoblasts (HSMM). Note that most FFLs are restricted to an individual cell type.
(E) Overlap of feed-forward loops (FFLs) identified in three pulmonary cell types - lung
fibroblasts (NHLF), small airway epithelium (SAEC), and pulmonary lymphatic

Neph et al. Page 23

Cell. Author manuscript; available in PMC 2013 September 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



endothelium (HMVEC_LLy). Highly distinct architectures are present even among cell
types from the same organ structure.
(F) Overlap of FFLs from networks of neighboring cell types, following the ordering and
coloration shown in Figure 4A. The size of each circle is proportional to the number of FFLs
contained within the network of the corresponding cell type. The color of the intersection
region between adjacent cell types indicates the Jaccard index between FFLs from those two
cell types (see legend in upper right of panel F). The average number of FFLs in each
network, the total number of FFLs across all networks and the number of common FFLs
across all networks is indicated in the center of the graph. (See also Supplemental Figure S3
and Supplemental Table S3).
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